Chapter 2

Electron transport in nanowires

In order to describe electron transport properties in nanowires, simple classical concepts
of conductance like Ohm’s law are no longer applicable. In this chapter we describe the
basic principles of the electronic transport through nanowires. The first section will focus on
metallic conductors in general. Further on, the effect of the dimensionality of the sample on
the conductance is discussed and an expression for the conductance through a ballistic system
is derived. In the final part, the tunneling current, which is a purely quantum mechanical
phenomenon, is explained.

2.1 Conductors in general

A conducting material like a metal contains electric charges, which are free to move throughout
the lattice. Each atom in a metal contributes at least one free electron to the lattice; these
electrons are delocalized and the wave function is nonzero throughout the whole lattice.
The typical electronic band structure of metals is responsible for the fact that metals are
good conductors. The Fermi energy, which is the highest energy electrons can have at zero
temperature and in equilibrium, is situated inside one of its energy bands. For electrical
conduction, it is necessary to have empty, unoccupied electron states directly above the Fermi
energy.

Classically, the conductance G of a metal is characterized by Ohm’s law. According to
his law, the current I through a conductor is determined by the potential difference V' and
the resistance R (Ohm’s law: V = I'R). The resistance R of a metallic wire, is defined by:

L 1
with L the length and A the cross-section of the wire. The resistivity p is a material constant
which for gold is approximately 2 - 1078 Ohm m. The conductance G, i.e. the reciprocal of
resistance, of a metallic wire depends on both the cross-section and the length. However, this
simple description yields only for macroscopic conductors. When the cross-section of the wire
tends to zero, for example if the dimensions of the wire approach the dimensions of single
atoms, one would expect the resistance to become infinite. In reality, the resistance of very
thin wires is quantized. In order to describe electron transport through these mesoscopic
systems, one often makes a distinction between different transport regimes. The specific
transport mechanism depends on different length scales. In the next section, we will discuss
these length scales. Section 2.3 explains the differences between the distinct transport regimes.
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2.2.4 Phase coherence length

The phase coherence length [, is a measure of the distance that an electron can travel before
its phase is randomized. Usually, this does not happen during elastic scattering events. On
the other hand, inelastic scattering events do randomize the phase of the electron wave.
Therefore, I; and [, are often mixed up.

2.3 Different transport regimes

As introduced above, electron transport can occur in two different regimes: the diffusive
regime and the ballistic regime. If the electrons are scattered often during their way through
the system, they are called to behave diffusively. On the other hand, if the electrons can
traverse the system without scattering even once, the system is considered ballistic. The
cross-over between diffusive and ballistic transport is set by the elastic mean free path l.. For
the case that the elastic mean free path l. is smaller than the dimensions of the system, many
scattering events occur, and the system thus behaves diffusively. In contrast, if le is larger
than the dimensions of the system the regime is called ballistic.

Second, a distinction can be made between the classical and the quantum diffusive regime.
If the electrons scatter such that the phase is strongly destroyed over short time intervals (i.e.
the phase coherence length is smaller than the size of the system) it is called the classical
diffusive regime. Conversely, if the phase information is conserved during many scattering
events the regime is called quantum diffusive and quantum effects due to the wave nature of
the electrons can be expected. The transport in the ballistic regime can either be regarded
as classical or quantum depending relation between the Fermi wave length Ar and the size of
the system L. An overview of the different electron transport regimes is given in Table 2.1.

Table 2.1: Different transport regimes.

Classic Quantum

Diffusive | Ar,li,le < L Ay le € L1,

Ballistic Ar <€ L <1l A, L <le < l;

2.4 Quantized conductance

For this thesis, the most important transport regime is the quantum ballistic regime. We will
therefore derive a formalism which describes the conductance in a quantum ballistic system,
called the Landauer-Biittiker formalism. The electrons in such a system behave quantum
ballistically and the different length scales are related as: Ap, L <l < l;. In order to derive
an expression for the conductance of a nanowire, one first needs to know its dimensionality
and the density of states.
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Figure 2.2: Dispersion relations. (a) Conductance through narrow channels is quantized
and scales with the integer number of occupied modes ny. (b) Biased electron system with
AE = py — p1. Electrons with an energy between p1 and pg contribute to the transport for
a single mode. These electrons can only have positive wave numbers k.

the Fermi energy. It is of importance to realize that the energy level splitting is strongly
dependent on the confinement (AE x 1/ w2).

We will now derive an expression for the density of states. The density of states per unit
length scale in 1D k-space can be written as follows:

(2.9)

with N the total number of occupied states, Ak = 7/L the spacing between two successive
k-values and g, the spin-degeneracy. An expression for the 1D density of state in energy space

can be found from k = /(2m/h)E, leading to:
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2.4.2 Conductance through ballistic channels

The energy of each electron is now characterized by the quantum numbers 7y and k;, the
former being discrete and the latter continuous. The product of the density of states and
the velocity of the electrons integrated over energy gives the net particle current that flows
within a single mode ny:
1 [H2
Ty = / va, (E)D1p(E)dE (2.11)
B
where vy, is the particle velocity and g1, p1 the electrochemical potentials of the reservoirs
1 and 2, respectively. The factor 1 /2 is introduced because only electrons with a positive
k-vector are taken into account, as depicted in Fig. 2.2(b). The total particle current can
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Figure 2.3: Square potential of width d and height V5. An electron comes in from the left
with a wave vector k and an energy E.

electrons cannot cross the gap, because they do not have sufficient energy to overcome the
barrier. However, quantum mechanics allows these electrons to travel through the barrier, a
phenomenon which is called tunneling. A schematic drawing of the energy band diagram for
such a system is shown in Fig. 2.4(a).

In the remaining of this section, an expression for the transmission of electron waves through
a simple barrier will be derived. The simplest barrier one could consider is a square potential
as displayed in Fig. 2.3:

0 forz<O
V(iz)=¢ W for0<z<d
0 forz>d

The one-dimensional time-independent Schrédinger equation is given by:

B ()

T+ Vov(e) = Ey() (2.17)

Considering only 0 < E < Vj and using:

g Y2mE g V2m(h - E)
B I

one finds three solutions to the Schrodinger equation, at the left of the barrier, in the barrier
and at the right of the barrier:

kT 4 (4 — 1)e™" forz <0
P(z) = t1e”k'd[e“k'(""d) + (tg — 1)6’“'(“"‘1)] for0<z<d
tltge_kldeik(z‘d) forz>d

where t; and to are the amplitude transmission coefficients for the transmission at 0 and at d,
respectively. By satisfying the boundary conditions for continuity of dy/dz and P at z =0

and r = d one finds:

2k b = 2ik'
L
The total transmission probability 7' can now be evaluated:

t1

_k,d]2 16E(Vo ~ E) _ (—2d

= 7 —/2m(Vo - E)) (2.18)

T= ltltze
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as illustrated in Fig. 2.4(b). The wave function of the electrodes in this region are determined
by the superposition of the incoming and reflected waves at the interfaces. This leads to pe-
riodic maxima in the transmission coefficient as a function of the applied bias voltage, called
Gundlach oscillations [5]. The shape of the barrier is conserved by keeping the electric field
F constant. Hence, we can write the expression for the differential conductance as function
of bias voltage, as obtained by Kolesnychenko et al. [6]:

dl

N A(V)eos(¢(V)) (2.21)
where the argument ¢ is given by:
4/2m (eV ~ )%/
(V) = g le e]f2) (2.22)

and F is the electric-field strength in the vacuum gap. The differential conductance has a
maximum when the argument (¢ equals 2rn. The bias voltage V' as a function of peak number

n can then be written as:

3nh \° 2/3,_2/3

From a plot of V versus n?/? one obtains the work function ¢, as the intercept at the voltage
axis and the electric-field strength F from the slope of the curve. The distance between the
contacts will be related to the electric-field F. An expression for the distance d between the
electrodes can be found:

i= eiF(eV - Ag) (2.24)

where A¢ is the difference in work function between the two contacts. The fact that both the
work function and information about the distance d can be obtained from a differential con-
ductance measurement makes this a powerful method for calibrating break junction devices.
Also, since this method provide us with information about the work function of the metal,
we can investigate if impurities are present on the metal surface.
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Figure 2.4: Energy band diagrams for two metal surfaces separated by a small vacuum gap
of distance d. The work functions of both metals are represented by ®; and @3 for the left
and the right metal, respectively. The difference in electrochemical potentials between py
and pg is equal to the bias voltage (AE = p1 — p2 = eV). {a) For small bias voltages one can
approximate the triangular shaped barrier by a square potential of height h. (b) If AE = eV
exceeds the work function of the metal, part of barrier region becomes classically accessible,
which leads to periodic maxima in the transmission coeflicient. Standing waves between the
classical turning point zo and the right electrode result in an oscillating dependence of the
tunneling probability.

When a small bias voltage is applied, the shape of the barrier does not rigorously change
and the conductance for a single mode of the junction can be approximated by:

92 —32d %
G —%—T — exp (-ﬁ—, [om(s — %)) (2.19)

where ¢ the work function of the material. The factor 1/2 in eV /2 comes from the fact that
the real barrier is approximated by a square potential. For triangular shaped barriers one
can define an average barrier height A (illustrated in Fig. 2.4(a)}, which is exactly half of
the maximum barrier height. Assuming eV/2 < ¢ leads to a simplified expression for the

conductance of a tunnel junction:
G o g7 (2.20)

where x = /2m¢/h.

2.6 Gundlach oscillations

A common problem encountered with the break junction geometry, is the lack of information
about the electrode separation. Fortunately, since the invention of the break junction tech-
nique several calibration methods are developed. One of the calibration techniques is based on
field-emission resonance, i.e. tunneling in the Fowler-Nordheim regime {4]. Fowler-Nordheim
tunneling is a special type of tunneling and occurs when the applied voltage V' exceeds the
work function ¢ of the material. Part of the barrier region now becomes classically accessible,
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then be calculated by summing over all occupied modes Ny

N&'mn:z' Nymna:
1 f#2 1 f#e m 2FE g,
= = EYDip(EVIE = = —=dE 2.12
K= 3 5 [ e EDwEE = 3 5 o 2 (212)
ny=1 i ny=1 M
with Ny, the highest occupied mode. Due to the fact that electrons can have two spin

directions, each state can be occupied twice, leading to g, = 2. Thus, for a single mode Ny
the particle current becomes:

2 2
= - == Aq
The difference in electrochemical potential between the two contacts is given by Ap = —eVi,,,

and each particle has charge g = —e, Putting that in, one finds for the charge current for all
occupied modes:

N a.
Ymax 232

2e
I= Z _e‘]ny = _N'ymuz _h-_(Alu‘) = Nymnm _h‘_vb’llGS (214)

ny=1
This result can be expressed in terms of conductance:

2

G=n,, 2% (2.15)
h

Expression 2.15 is the well-known result for the two-terminal conductance of a VETy Narrow
ballistic channel. It shows that conductance is quantized and scales with the integer number
of occupied modes. The highest occupied mode can be estimated from N, _ =~ 2W/AF.
Obviously, real ballistic channels are not fully ideal in the sense that every electron emitted
from the reservoir 1 will end up in reservoir 2. One can therefore generalize expression 2.15

to obtain the famous Landauer-Biittiker formula:

282 Nyma::
G= Nyae = o, (2.16)

ny=1

where T}, is called the transmission probability, meaning the probability for a wave to reach
the other side of the system. The existence of quantized conductance was demonstrated for
the first time by van Wees et ol. in 1988 {2].

It is important to realize that nanowires are in principle three-dimensional structures.
Although the derivation of the quantized conductance expression 2.16 is done for a two-
dimensional system with a quantization in the y-direction, it is easy to see that quantization
in two directions (y and z) gives also a limited number of electron transport modes (3].

2.5 Tunneling

Section 2.4 discussed the conductance of systems which are confined in one or two directions,
thereby creating an effective one-dimensional conductance channel. What would happen
if a barrier is introduced in such a channel, or in other words, what would happen if we
break the nanowire but still keep the two ends of the wire near to each other? Classically,
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Figure 2.1: Typical 2D ballistic channel of length L and width W. The electrons traversing
this channel are only confined in the y-direction. The ballistic channel is connected on both
sides to a reservoir with electrochemical potentials y; and py. .

2.4.1 Density of states

A nanowire can be described as a 2D ballistic channel of length L and width W, connected to
two reservoirs with electrochemical potentials 1 and g, respectively (illustrated in Fig. 2.1).
The density of states, which is the number of electron states per unit energy range, in the
channel can be calculated from the free electron gas approximation. For a two-dimensional
system, the Schrédinger equation is given by:

Bz, y) = eemthy) (2.6)

For wave vectors k% = k2 4 kﬁ and assuming a electron confinement in the y-direction one
finds that the wave vector satisfies:
NgT\ 2 Ty Ty 2
k2=(m)+(——y) 2.7
T W (2.7)
with ng,ny, = 1,2,3,... the available electron modes. Because electrons travelling in the x-

direction are completely free, we can approximate k; by setting L = co. Hence, k; now
becomes a continuum and the total energy of an electron inside the channel can now be

written as: 9.0 9
_ k% h 9 Ty T 2
Bnlk) = 5= (kx + ("_w ) ) (2.8)

Expression 2.8 shows that the energy and wave vector of an electron are quantized in the
y-direction, while being continuous in the x-direction. This means that the electron behaves
one-dimensional, which makes it much easier to evaluate the net current through the channel.
The relation between energy and wave vector is called the dispersion relation and is shown
in Fig. 2.2(a). All available k-states arc filled up to the Fermi energy, indicated by the thick
line. For the case shown in Fig. 2.2(a) only the modes ny = 1 and ny = 2 are relevant modes
for electron transport through the system, because there are free electron states right above
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2.2 Characteristic length scales

The electronic properties of nanodevices are governed to a large extent by the size of the
system. In other words, if the dimensions of the system in three directions are given by L,
Ly and L., one can determine the dimensionality of the system by a comparing the different
lengths with other length scales, such as the Fermi wave length, the elastic mean free path,
the inelastic mean free path and the phase coherence length. In general, a conducting system
can be classified as a three-, two- or one-dimensional system. The relevant length scales are
described below.

2.2.1 Fermi wave length

For electron transport in a metal only electrons with an energy close to the Fermi energy are
important. The Fermi wave length is therefore a relevant length scale in nanoscale systems.
The quantum mechanical wave character of the electrons becomes important when the electron
wavelength is comparable with the size of the system. For an electron having mass m, kinetic
energy En and a velocity v, one can easily calculate its de Broglie wavelength A

p?. ﬁ2k2 hZ
Im  2m  2mA?
Electrons at the Fermi energy will have the largest kinetic energy, equal to Er. Therefore,
the associated Fermi wave length Ap is:

(2.2)

kin =

h
Ap= — 2.
F 2mKEp 23)

For simple metals, the Fermi wave length is Ap ~ 21071 m

2.2.2 Elastic mean free path

Ideal solids consist of a perfect, regular lattice, having no irregularities which can destroy
the symmetry of the crystal. In reality, perfect crystals do not exist and the lattice contains
impurities and dislocations. Electrons travelling inside the solid do not have an infinite mean
free path and scattering processes take place all the time. As a result, the elastic mean free
path I., which is a measure for the distance between two elastic scattering events, has a finite
value. If an electron scatters from a fault in the crystal (dislocations, impurities, walls), due
to the large differences in masses of the electron and the ion, no energy will be transferred
during the scattering event and the scattering is considered elastic. The elastic mean free
path can be calculated from the time 7. between two successive scattering events:

lo = TeUF (2.4)

where vp = hkp/m is the Fermi velocity.

2.2.3 Inelastic mean free path

Besides electron-impurity scattering, other relevant electron scattering events inside the crys-
tal can occur. For example, moving electrons can excite lattice vibrations or electrons can
scatter with other electrons, both resulting in an energy exchange between both scattering
partners. Therefore, these scattering events are considered to be inelastic. The inelastic mean
free path [; is defined as the distance between two inelastic scattering events.




